Randomized Functionalities; GMW Continued

CS 598 DH

Today's objectives

Discuss randomized functionalities

Update definition of semi-honest security
See a proof of insecurity
Consider security proof for GMW protocol

GMW Protocol

Propagate secret shares from input wires to output wires

Use OT to implement AND gates
Cost:
$O(|C|)$ OTs
Number of protocol rounds scales with multiplicative depth of C

Today: Full definition of semi-honest security

And GMW for more than two parties

Two-Party Semi-Honest Security for deterministic functionalities

Let f be a function. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in\{0,1\}$ there exists a polynomial time simulator \mathcal{S}_{i} such that for all inputs x_{0}, x_{1} :
$\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right) \stackrel{c}{=} \mathcal{S}_{i}\left(x_{i} ; f\left(x_{0}, x_{1}\right)\right)$

Two-Party Semi-Honest Security for deterministic functionalities

Let f be a function. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in\{0,1\}$ there exists a polynomial time simulator \mathcal{S}_{i} such that for all inputs x_{0}, x_{1} :
$\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right) \stackrel{c}{=} \mathcal{S}_{i}\left(x_{i}, f\left(x_{0}, x_{1}\right)\right)$

Pseudorandom Function (PRF)

A function family F is considered pseudorandom if the following indistinguishability holds

```
Ideal:
    T\leftarrowEmptyMap
    lookup(m):
    if m\not\inT:
    T[m]\stackrel{&}{&}{0,1}}\mp@subsup{}}{}{\mathrm{ out}
    return T[m]
```


Pseudorandom Function (PRF)

A function family F is considered pseudorandom if the following indistinguishability holds

```
Ideal:
    T\leftarrowEmptyMap
    lookup(m):
    if m\not\inT:
        T[m]\stackrel{&}{&}{0,1}}\mp@subsup{}}{}{\mathrm{ out}
    return T[m]

Let's "securely" implement the following functionality Input: \(P_{0}, P_{1}\) input nothing

Output: \(P_{0}\) outputs an encryption key \(k, P_{1}\) outputs \(F(k, 0)\)

Let's "securely" implement the following functionality Input: \(P_{0}, P_{1}\) input nothing

Output: \(P_{0}\) outputs an encryption key \(k, P_{1}\) outputs \(F(k, 0)\)

\(k \stackrel{\&}{\leftarrow}\{0,1\}^{\lambda}\)

Let's "securely" implement the following functionality Input: \(P_{0}, P_{1}\) input nothing

Output: \(P_{0}\) outputs an encryption key \(k, P_{1}\) outputs \(F(k, 0)\)
\[
k \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\]

\(F(k, 0)\)

View \(_{0}()\) :
View \(_{1}()\) :
\(V_{i e w}^{0}():\)
\(k \stackrel{\&}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k\)
\(V i e w_{0}():\)
\(k \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k\)
\(\mathcal{S}_{0}(k):\)

View \(_{1}():\)
\(k \stackrel{\&}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k\)
\(\mathcal{S}_{1}(F(k, 0)):\)
```

View $_{0}():$
$k \stackrel{\stackrel{\leftrightarrow}{\leftarrow}\{0,1\}^{\lambda}}{ }$
return k

```
\(\mathcal{S}_{0}(k):\)
    \(k^{\prime} \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}\)
    return \(k^{\prime}\)

View \(_{1}():\)
\(k \stackrel{\&}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k\)
\(\mathcal{S}_{1}(F(k, 0)):\)
```

$\operatorname{View}_{0}():$
$k \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$
return k

```

\(\mathcal{S}_{0}(k):\)
\(k^{\prime} \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k^{\prime}\)

View \(_{1}():\)
\(k \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k\)
=
\(\mathcal{S}_{1}(F(k, 0)):\)
\(k^{\prime} \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k^{\prime}\)
\(\operatorname{View}_{0}():\)
\(k \stackrel{S}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k\)
\(=\)
\(\delta_{0}(k):\)
\(k^{\prime} \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k^{\prime}\)

View \(_{1}():\)
\(k \stackrel{\&}{\leftarrow}\{0,1\}^{\lambda}\)
return \(k\)
The simulated view is not consistent with the output!
\[
\begin{aligned}
& \mathcal{S}_{1}(F(k, 0)): \\
& k^{\prime} \stackrel{\Im}{\leftarrow}\{0,1\}^{\lambda} \\
& \text { return } k^{\prime}
\end{aligned}
\]

\section*{Two-Party Semi-Honest Security for deterministic functionalities}

Let \(f\) be a deterministic functionality. We say that a protocol \(\Pi\) securely computes \(f\) in the presence of a semihonest adversary if for each party \(i \in\{0,1\}\) there exists a polynomial time simulator \(\mathcal{S}_{i}\) such that for all inputs \(x_{0}, x_{1}\) :
\[
\begin{gathered}
\left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right)\right\} \\
\underline{=} \\
\left\{\delta_{i}\left(x_{i}, y_{i}\right) \mid\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\}
\end{gathered}
\]

\section*{Two-Party Semi-Honest Security}

Let \(f\) be a functionality. We say that a protocol \(\Pi\) securely computes \(f\) in the presence of a semi-honest adversary if for each party \(i \in\{0,1\}\) there exists a polynomial time simulator \(\mathcal{S}_{i}\) such that for all inputs \(x_{0}, x_{1}\) :
\[
\begin{gathered}
\left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right), \operatorname{Output}^{\Pi}\left(x_{0}, x_{1}\right)\right\} \\
\stackrel{c}{=} \\
\left\{\mathcal{S}_{i}\left(x_{i}, y_{i}\right),\left(y_{0}, y_{1}\right) \mid\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\}
\end{gathered}
\]
\(\left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right)\right.\), Output \(\left.^{\mathrm{\Pi}}\left(x_{0}, x_{1}\right)\right\}\)
\(\left\{\mathcal{S}_{i}\left(x_{i}, y_{i}\right),\left(y_{0}, y_{1}\right) \mid\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\}\)
\(\{k,(k, F(k, 0))\}\)
\(\stackrel{c}{=}\)
\(\left\{\mathcal{S}_{1}(F(k, 0)),(k, F(k, 0)) \mid k \leftarrow\{0,1\}^{\lambda}\right\}\)

Fact: there does not exist \(\mathcal{S}_{1}\) proving this protocol secure
\[
\begin{gathered}
\{k,(k, F(k, 0))\} \\
\underline{\bar{c}} \\
\left\{\mathcal{S}_{1}(F(k, 0)),(k, F(k, 0)) \mid k \leftarrow\{0,1\}^{\lambda}\right\}
\end{gathered}
\]

Fact: there does not exist \(\mathcal{S}_{1}\) proving this protocol secure

Proof: By using the existence of \(\mathcal{S}_{1}\) to construct a distinguisher for the PRF
\[
\begin{gathered}
\{k,(k, F(k, 0))\} \\
\frac{\bar{c}}{\overline{=}} \\
\left\{\mathcal{S}_{1}(F(k, 0)),(k, F(k, 0)) \mid k \leftarrow\{0,1\}^{\lambda}\right\}
\end{gathered}
\]

Given \(F(k, 0), \mathcal{S}_{1}\) has to spit out \(k\)

\[
\begin{gathered}
\{k,(k, F(k, 0))\} \\
\underline{\bar{c}} \\
\left\{\mathcal{S}_{1}(F(k, 0)),(k, F(k, 0)) \mid k \leftarrow\{0,1\}^{\lambda}\right\}
\end{gathered}
\]

\section*{\(\mathscr{D}(\mathrm{PRF})\) :}
    \(m \leftarrow \operatorname{PRF}\). lookup (0)
    \(k \leftarrow S_{1}(m)\)

\section*{return}
\[
\text { PRF. lookup }(1) \stackrel{?}{=} F(k, 1)
\]

Given \(F(k, 0), \mathcal{S}_{1}\) has to spit out \(k\)

\[
\begin{gathered}
\{k,(k, F(k, 0))\} \\
\stackrel{c}{=} \\
\left\{\mathcal{S}_{1}(F(k, 0)),(k, F(k, 0)) \mid k \leftarrow\{0,1\}^{\lambda}\right\}
\end{gathered}
\]
\(\mathscr{D}(\mathrm{PRF})\) : \(m \leftarrow\) PRF. lookup (0)
\(k \leftarrow S_{1}(m)\)
return
PRF. lookup(1) \(\stackrel{?}{=} F(k, 1)\)

Ideal:
\(\quad T \leftarrow\) EmptyMap
Real:
\(k \stackrel{\&}{\leftarrow}\{0,1\}^{\lambda}\)
\[
\text { lookup }(m) \text { : }
\]
return \(F(k, m)\)

\section*{CONTRADICTION}
\[
\begin{aligned}
& \underline{\text { C }} \quad \text { lookup }(m): \\
& \text { lookup }(m) \text { : } \\
& \text { if } m \notin T \text { : } \\
& T[m] \stackrel{\$}{\&}\{0,1\}^{\text {out }} \\
& \text { return } T[m]
\end{aligned}
\]

Input: \(P_{0}, P_{1}\) input nothing
Output: \(P_{0}\) outputs an encryption key \(k, P_{1}\) outputs \(F(k, 0)\)
\[
k \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\]

\(F(k, 0)\)

Input: \(P_{0}, P_{1}\) input nothing
Output: \(P_{0}\) outputs an encryption key \(k, P_{1}\) outputs \(F(k, 0)\)


\section*{\(F(k, 0)\)}

\(F(k, 0)\)
\[
\begin{aligned}
& k \stackrel{\S}{\leftarrow} \frac{F(k, 1\}^{\lambda}}{} \\
& \left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right), \operatorname{Output}^{\mathrm{\Pi}}\left(x_{0}, x_{1}\right)\right\} \\
& \left\{\mathcal{S}_{i}\left(x_{i}, y_{i}\right),\left(y_{0}, y_{1}\right) \stackrel{\stackrel{c}{\mid}}{=}\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\} \\
& \{F(k, 0),(k, F(k, 0))\} \\
& \stackrel{c}{=} \\
& \left\{\mathcal{S}_{1}(F(k, 0)),(k, F(k, 0)) \mid k \leftarrow\{0,1\}^{\lambda}\right\}
\end{aligned}
\]
\(\left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right), \operatorname{Output}^{\Pi}\left(x_{0}, x_{1}\right)\right\}\) \(\left.\stackrel{C}{\overline{\mid}}\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\}\)
\(\{F(k, 0),(k, F(k, 0))\}\)
\(\left.\stackrel{\underline{c}}{\overline{(k, 0}}) \mid k \leftarrow\{0,1\}^{\lambda}\right\}\)
```

\delta
return F(k,0)

```

\section*{Two-Party Semi-Honest Security}

Let \(f\) be a functionality. We say that a protocol \(\Pi\) securely computes \(f\) in the presence of a semi-honest adversary if for each party \(i \in\{0,1\}\) there exists a polynomial time simulator \(\mathcal{S}_{i}\) such that for all inputs \(x_{0}, x_{1}\) :
\[
\begin{gathered}
\left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right), \operatorname{Output}^{\Pi}\left(x_{0}, x_{1}\right)\right\} \\
\stackrel{\underline{c}}{=} \\
\left\{\mathcal{S}_{i}\left(x_{i}, y_{i}\right),\left(y_{0}, y_{1}\right) \mid\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\}
\end{gathered}
\]
\[
\stackrel{1}{n}^{2}
\]


We consider a single global adversary who corrupts a subset of the parties

\section*{Two-Party Semi-Honest Security}

Let \(f\) be a functionality. We say that a protocol \(\Pi\) securely computes \(f\) in the presence of a semi-honest adversary if for each party \(i \in\{0,1\}\) there exists a polynomial time simulator \(\mathcal{S}_{i}\) such that for all inputs \(x_{0}, x_{1}\) :
\[
\begin{gathered}
\left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right), \operatorname{Output}^{\Pi}\left(x_{0}, x_{1}\right)\right\} \\
\approx \\
\left\{\mathcal{S}_{i}\left(x_{i}, y_{i}\right),\left(y_{0}, y_{1}\right) \mid\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\}
\end{gathered}
\]

\section*{Semi-Honest Security}

Let \(P_{0}, \ldots, P_{n-1}\) be \(n\) parties. Let \(f\) be a functionality. We say that a protocol \(\Pi\) securely computes \(f\) in the presence of a semi-honest adversary if for each subset \(c \subseteq\{0, \ldots, n-1\}\) of corrupted parties there exists a polynomial time simulator \(\mathcal{S}_{c}\) such that for all inputs \(x_{0}, \ldots, x_{n-1}\) :
\[
\begin{gathered}
\left\{\left(\bigcup_{i \in c} \operatorname{View}_{i}^{\Pi}\left(x_{0}, \ldots, x_{n-1}\right)\right), \operatorname{output}^{\Pi}\left(x_{0}, \ldots, x_{n-1}\right)\right\} \\
\approx \\
\left\{\mathcal{S}_{c}\left(\bigcup_{i \in c}\left\{x_{i}, y_{i}\right\}\right),\left(y_{0}, \ldots y_{n-1}\right) \mid\left(y_{0}, \ldots y_{n-1}\right) \leftarrow f\left(x_{0}, \ldots, x_{n-1}\right)\right\}
\end{gathered}
\]
-
\(\rightarrow\)

0.
\(0 \rightarrow 0\)



\section*{Multiparty GMW}

\section*{XOR Secret Shares}

The XOR secret sharing of a bit \(x\) is a pair of bits \(\left\langle x_{0}, x_{1}\right\rangle\) where \(P_{0}\) holds \(x_{0}\) and \(P_{1}\) holds
\[
x_{1} \text {, and where } x_{0} \oplus x_{1}=x
\]

We sometimes denote such a pair by \([x]\)

\section*{XOR Secret Shares}


The XOR secret sharing of a bit \(x\) is a tuple of bits \(\left\langle x_{0}, \ldots, x_{n-1}\right\rangle\) where \(P_{i}\) holds \(x_{i}\), and where:
\[
\left(\bigoplus_{i} x_{i}\right)=x
\]

We sometimes denote such a pair by \([x]\)

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?


How do we "decrypt" output shares?


Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?
How do we "decrypt" output shares?


Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?
How do we "decrypt" output shares?
Nos


\section*{How do we AND two shares?}

Goal: given gate input wires holding \([x],[y]\), put \([x \wedge y]\) on the gate output
\[
\begin{gathered}
\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \\
=\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{1}\right) \oplus\left(x_{1} \wedge y_{0}\right) \oplus\left(x_{1} \wedge y_{1}\right)
\end{gathered}
\]

\section*{How do we AND two shares?}

Goal: given gate input wires holding \([x],[y]\), put \([x \wedge y]\) on the gate output
\[
\begin{gathered}
\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \\
=\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{1}\right) \oplus\left(x_{1} \wedge y_{0}\right) \oplus\left(x_{1} \wedge y_{1}\right)
\end{gathered}
\]

\section*{How do we AND two shares?}

\section*{Goal: given gate input wires holding \([x],[y]\),} put \([x \wedge y]\) on the gate output
\[
\left(\bigoplus_{i} x_{i}\right) \wedge\left(\bigoplus_{i} y_{i}\right)
\]
\[
\bigoplus_{i, j} x_{i} \wedge y_{j}
\]
\[
a_{\text {㱒百 }}
\]



\section*{GMW Security}

\section*{FOUNDATIOIS OF CRYPTOGRRPHY \\ Volume II Basic Applications}


ODED GOLDREECH

Theorem 7.3.3 (Composition Theorem for the semi-honest model): Suppose that \(g\) is privately reducible to \(f\) and that there exists a protocol for privately computing \(f\). Then there exists a protocol for privately computing \(g\).

\section*{Composition}

Suppose we have a protocol \(\rho\) that securely computes a functionality \(g\)

\section*{Composition}

Suppose we have a protocol \(\rho\) that securely computes a functionality \(g\)

Suppose we write a new a "hybrid" protocol \(\pi\) that uses \(g\) as a black box

\section*{Composition}

Suppose we have a protocol \(\rho\) that securely computes a functionality \(g\)

Suppose we write a new a "hybrid" protocol \(\pi\) that uses \(g\) as a black box

Now we prove \(\pi\) securely computes \(f\) when using \(g\) as a black box

\section*{Composition}

Suppose we have a protocol \(\rho\) that securely computes a functionality \(g\)

Suppose we write a new a "hybrid" protocol \(\pi\) that uses \(g\) as a black box

Now we prove \(\pi\) securely computes \(f\) when using \(g\) as a black box

If we then substitute calls to \(g\) by \(\rho\), then the resulting protocol securely implements \(f\)



Goal: given gate input wires holding \([x],[y]\), put \([x \wedge y]\) on the gate output
\[
r \stackrel{\$}{\leftarrow}\{0,1\} \quad s \stackrel{\$}{\leftarrow}\{0,1\}
\]



\[
s \stackrel{\$}{\leftarrow}\{0,1\}
\]


Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?


How do we "decrypt" output shares?


\section*{Real World Protocol}

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares
For each AND, sample a bit and call OT functionality twice

For each output, send/
receive shares

\section*{Real World Protocol}

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares
For each AND, sample a bit and call OT functionality twice

For each output, send/
receive shares

\section*{Simulation}

Walk gate by gate through circuit, maintaining simulated wire shares

\section*{Real World Protocol}

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares
For each AND, sample a bit and call OT functionality twice

For each output, send/ receive shares

\section*{Simulation}

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

\section*{Real World Protocol}

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares
For each AND, sample a bit and call OT functionality twice

For each output, send/ receive shares

\section*{Simulation}

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share

\section*{Real World Protocol}

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares
For each AND, sample a bit and call OT functionality twice

For each output, send/ receive shares

\section*{Simulation}

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share For each XOR, XOR shares

\section*{Real World Protocol}

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares
For each AND, sample a bit and call OT functionality twice

For each output, send/ receive shares

\section*{Simulation}

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share For each XOR, XOR shares

For each AND, sample a bit and simulate OT receive by a uniform bit

\section*{Real World Protocol}

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares
For each AND, sample a bit and call OT functionality twice

For each output, send/ receive shares

\section*{Simulation}

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share For each XOR, XOR shares

For each AND, sample a bit and simulate OT receive by a uniform bit

For each output, compute message consistent with the output

\section*{Today's objectives}

\section*{Discuss randomized functionalities}

Update definition of semi-honest security
See a proof of insecurity
Consider security proof for GMW protocol```

