Randomized Functionalities;
GMW Continued

CS 598 DH

Today’s objectives

Discuss randomized functionalities
Update definition of semi-honest security
See a proof of insecurity

Consider security proof for GMW protocol

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:
O(|C|)OTs

Number of protocol rounds scales with multiplicative depth of C

Today: Full definition of semi-honest security

And GMW for more than two parties

Two-Party Semi-Honest Security

Let f be a function. We say that a protocol 11 securely
computes f in the presence of a semi-honest adversary if
for each party i € {0,1} there exists a polynomial time
simulator &'; such that for all inputs x, X:

View; (xg, X;) = & (X, f(xg, X1))

Two-Party Semi-Honest Security
for deterministic functionalities

Let f be a function. We say that a protocol 11 securely
computes f in the presence of a semi-honest adversary if
for each party i € {0,1} there exists a polynomial time
simulator &'; such that for all inputs x, X:

View; (xg, X;) = & (X, f(xg, X1))

Pseudorandom Function (PRF)

A function family I is considered pseudorandom if
the following indistinguishability holds

Ideal:
Real: T < EmptyMap
k& (0.1} .
p— Lookup(m):
Lookup(m): if megT:
return F(k,m) Tim] < {0,1)°u

return T([m]

Pseudorandom Function (PRF)

A function family I is considered pseudorandom if
the following indistinguishability holds

Ideal:
Real: T < EmptyMap
k& (0.1} .
p— Lookup(m):
Lookup(m): if megT:
return F(k,m) Tim] < {0,1)°u

return T([m]

“I' looks random”

Let’s “securely” implement the following functionality
Input: Py, 7 input nothing

Output: P, outputs an encryption key k, P, outputs F(k,0)

Let’s “securely” implement the following functionality
Input: Py, 7 input nothing

Output: P, outputs an encryption key k, P, outputs F(k,0)

-

P Q

k& (0.1}

Let’s “securely” implement the following functionality
Input: Py, 7 input nothing

Output: P, outputs an encryption key k, P, outputs F(k,0)

-

P Q

—_—
k& (0.1}

F(k,0)

View,() View ()

12

-

k< 0,11 I " .
-0 k F(k,0)
View,() View,()
k& (0.1} k& (0.1}

return k return k

13

-

k0.1 I " .
- k F(k,0)
Viewy() View,():
k& (0.1} k& (0.1}
return k return k

So(k): S (F(k,0)):

14

-

Loy k F(k.0)

View,(): Vlewlﬂ;() . /1
k& (0.1} k< {0.1)
return k return k

So(k): S (F(k,0)):
k10112
return k'

15

Viewy():
k& (0.1}
return k%

So(k):
k10112
return k'

16

View()
k& (0.1}
return &k

$(F(k,0)):
k1011
return k'

~

return k’

-

k<— {01}ﬂ I ’
F(k,0)
View,():
k& (0.1}
return k
So(k):
& (0,1}

Q

The simulated view
IS not consistent
with the output!

17

View()
k& (0.1}
return &k

S (F(k,0)):

2 (0,1}
return k’

Two-Party Semi-Honest Security
for deterministic functionalities

Let f be a deterministic functionality. We say that a
protocol 11 securely computes f in the presence of a semi-
honest adversary if for each party i € {0,1} there exists a
polynomial time simulator &’; such that for all inputs X, X:

{ View?(xo, Xp)}
C

1%, ¥) | (Voo Y1) < flxg, x1) }

18

Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol 11 securely
computes f in the presence of a semi-honest adversary if
for each party i € {0,1} there exists a polynomial time
simulator &'; such that for all inputs Xy, X,

{Viewin(xo, X1), OutputH(xO, X))}
C

1S ¥ 0o, Y1) | Oos Y1) fxp, X1))

19

{ Viewl.n(xo, X1), Outputn(xo, Xp)}
C

18X ¥i)s 0o, Y1) | o» Y1) < (X, x1) }

ik, (k, F(k,0))]
C

(S (F(k,0)), (k, F(k,0)) | k < {0,1}")

~ -

Q

—p ¢

F(k,0)

k<—{01}

Fact: there does not exist &', proving this protocol secure

ik, (k, F(k,0))]
C

(S (F(k,0)), (k, F(k,0)) | k < {0,1}")

-
g Q

F(k,0)

~

k<—{01}

Fact: there does not exist &', proving this protocol secure

Proof: By using the existence of &, to construct a distinguisher for the PRF

ik, (k, F(k,0))]
C

(S (F(k,0)), (k, F(k,0)) | k < {0,1}")

22

k& (0,1)

Given F(k,0), & has to spit out k

ik, (k, F(k,0))]
C

(S (F(k,0)), (k, F(k,0)) | k < {0,1}")

D (PRF):
m < PRF.lookup(0)
F(k,0) k «— §,(m)
return
PRF.lookup(1) = F(k,1)

v & o1y k

Given F(k,0), & has to spit out k

ik, (k, F(k,0))]
C

(S (F(k,0)), (k, F(k,0)) | k < {0,1}")

@ 2(PRF):

> 5 Q& m «— PRF.lookup(0)
k F(k.0) k < §,(m)
return

()

PRF.lookup(1) = F(k,1)

CONTRADICTION

Ideal:
Real: T < EmptyMap
k& (0,1} -
— Lookup(m):
Lookup(m): if meT:
return F(k, m) Tim] < (0,1}

return T([m]

25

Input: Py, 7 input nothing

Output: P, outputs an encryption key k, P, outputs F(k,0)

@ .

—_—
k& (0.1}

F(k,0)

Input: Py, 7 input nothing

Output: P, outputs an encryption key k, P, outputs F(k,0)

-

P Q

F(k,0)
k< (0,1} EE—

F(k,0)

ﬁ {View; (x, X;), Output'(xy, x;) }

SO0 FR0) o —
{ Csji(xia yi)a (y()a yl) ‘ (y()a yl) <« f(x()a x])}

~

F(k,0), (k, F(k,0)) }
C

(S (F(k,0)), (k, F(k,0)) | k < {0,1}%]

A {View!(x,, x,), Output™(x,, x,)}

2 o1y F(k,0) F(k,0) —
{Csji(xiayi)a (y()ayl) ‘ (y()ayl) <_f(x()9x1)}

~

F(k,0), (k, F(k,0)) }
C

&8, (F(k,0)):
return Fk,0)

Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol 11 securely
computes f in the presence of a semi-honest adversary if
for each party i € {0,1} there exists a polynomial time
simulator &'; such that for all inputs Xy, X,

{Viewin(xo, X1), OutputH(xO, X))}
C

1S ¥ 0o, Y1) | Oos Y1) fxp, X1))

30

£ Q

We consider a single global adversary who corrupts a subset of the parties

32

Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol 11 securely
computes f in the presence of a semi-honest adversary if
for each party i € {0,1} there exists a polynomial time
simulator &'; such that for all inputs Xy, X,

{Viewin(xo, X1), OutputH(xO, X))}

N
NS

1S ¥ 0o, Y1) | Oos Y1) fxp, X1))

33

Semi-Honest Security

Let Py, ..., P, _, be n parties. Let | be a functionality. We say

that a protocol 11 securely computes f in the presence of a
semi-honest adversary if for each subset ¢ C {0,....n — 1} of
corrupted parties there exists a polynomial time simulator & .

such that for all inputs X, ..., X

n—1-
(U View?(xo, e xnl)) , Output'(xy, ..., x ;)
IEC
'
'Y

{56 (U {xi,yi}),(yo, o Vu) | Oos -+ - Y1) < S, - - ’xnl)}

34

Multiparty GMW

XOR Secret Shares ﬂ
-

P Q

The XOR secret sharing of a bit x is a pair of
bits (X, X;) where P, holds x, and P, holds

X1, and where x, @ x| = x

We sometimes denote such a pair by | x]

38

XOR Secret Shares ﬂ
-

P Q

P Q

The XOR secret sharing of a bit x is a tuple of
bits (X, . ..,X,_) where P; holds x;, and where:

(@)~

We sometimes denote such a pair by | x]

39

la]
1]

[c]
[d]

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

p

How do we “decrypt” output shares”?

40

[(a ® c)(b D d)]
®

-

X

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

How do we “decrypt” output shares”?

E [(a @)b D d)]
°

41

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

How do we “decrypt” output shares”?

E [(a @)b D d)]
°

42

How do we AND two shares?

Goal: given gate input wires holding [x], | v],
put [x A y] on the gate output

¢

(Xo @ x1) A (Vo D yy1)
= (Xg A Vo) D (Xg Ay D (x; Ayy) D (x; Ayy)

43

How do we AND two shares?
Goal: given gate input wires holding [x], [y], 4

put [x A y] on the gate output ’ Q

(Xo @ x1) A (Vo D yy1)
= (Xg A Yo) © (g Ayy) © (x; AYyp) © (X Ayy)

NP

44

How do we AND two shares?

Goal: given gate input wires holding [x], | v],
put [x A y] on the gate output

M @)

$F 8 ,-

@xi/\y]'

l,]

45

GMW Security

FOUNDATIONS OF
CRYPTOGRAPHY

Volume Il Basic Applications

Theorem 7.3.3 (Composition Theorem for the semi-honest model): Suppose that g is
privately reducible to f and that there exists a protocol for privately computing f.
Then there exists a protocol for privately computing g.

50

Composition

Suppose we have a protocol p that securely computes a functionality g

51

Composition

Suppose we have a protocol p that securely computes a functionality g

Suppose we write a new a “hybrid” protocol r that uses g as a black box

52

Composition

Suppose we have a protocol p that securely computes a functionality g
Suppose we write a new a “hybrid” protocol r that uses g as a black box

Now we prove & securely computes f when using g as a black box

53

Composition

Suppose we have a protocol p that securely computes a functionality g
Suppose we write a new a “hybrid” protocol r that uses g as a black box
Now we prove & securely computes f when using g as a black box

If we then substitute calls to g by p, then the
resulting protocol securely implements f

54

‘ . Goal: given gate input wires holding [x], | v], I ’

put [x A y] on the gate output ’ .

r e (0.1) s & 10.1)

57

s & 0.1

-‘—
r<—{01}

S, S D x;

la]
1]

[c]
[d]

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

p

How do we “decrypt” output shares”?

60

[(a ® c)(b D d)]
®

-

X

Real World Protocol

Walk gate by gate through circuit,
maintaining wire shares

For each input (owned by this
party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each output, send/
recelve shares

61

Real World Protocol Simulation

Walk gate by gate through circuit, Walk gate by gate through circuit,
maintaining wire shares maintaining simulated wire shares

For each input (owned by this
party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each output, send/
recelve shares

62

Real World Protocol Simulation

Walk gate by gate through circuit, Walk gate by gate through circuit,
maintaining wire shares maintaining simulated wire shares
For each input (owned by this For each input (owned by this
party), sample and send shares party), sample random shares

For each other input, receive a share
For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each output, send/
recelve shares

63

Real World Protocol

Walk gate by gate through circuit,
maintaining wire shares

For each input (owned by this
party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each output, send/
recelve shares

Simulation

Walk gate by gate through circuit,
maintaining simulated wire shares

For each input (owned by this
party), sample random shares

For each other input, sample a share

64

Real World Protocol

Walk gate by gate through circuit,
maintaining wire shares

For each input (owned by this
party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each output, send/
recelve shares

65

Simulation

Walk gate by gate through circuit,
maintaining simulated wire shares

For each input (owned by this
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Real World Protocol

Walk gate by gate through circuit,
maintaining wire shares

For each input (owned by this
party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each output, send/
recelve shares

66

Simulation

Walk gate by gate through circuit,
maintaining simulated wire shares

For each input (owned by this
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

For each AND, sample a bit and
simulate OT receive by a uniform bit

Real World Protocol

Walk gate by gate through circuit,
maintaining wire shares

For each input (owned by this
party), sample and send shares

For each other input, receive a share
For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each output, send/
recelve shares

67

Simulation

Walk gate by gate through circuit,
maintaining simulated wire shares

For each input (owned by this
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

For each AND, sample a bit and
simulate OT receive by a uniform bit

For each output, compute message
consistent with the output

Today’s objectives

Discuss randomized functionalities
Update definition of semi-honest security
See a proof of insecurity

Consider security proof for GMW protocol

