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Today’s objectives 

Discuss randomized functionalities


Update definition of semi-honest security


See a proof of insecurity


Consider security proof for GMW protocol
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GMW Protocol

Propagate secret shares from input 
wires to output wires

Use OT to implement AND gates

Cost:

   OTs

  Number of protocol rounds scales with multiplicative depth of 
O( |C | )

C
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Today: Full definition of semi-honest security


And GMW for more than two parties



Two-Party Semi-Honest Security

for deterministic functionalities 

Let  be a function. We say that a protocol  securely 
computes  in the presence of a semi-honest adversary if 
for each party  there exists a polynomial time 

simulator  such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

5

ViewΠ
i (x0, x1)

c= 𝒮i(xi, f(x0, x1))
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for deterministic functionalities 

Let  be a function. We say that a protocol  securely 
computes  in the presence of a semi-honest adversary if 
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simulator  such that for all inputs :
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Pseudorandom Function (PRF)

Real: 
  

 lookup( ): 
   return 

k $← {0,1}λ

m
F(k, m)

A function family  is considered pseudorandom if 
the following indistinguishability holds

F

Ideal: 
  

 lookup( ): 
   if : 
      
   return 

T ← EmptyMap

m
m ∉ T

T[m] $← {0,1}out

T[m]
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c=



Pseudorandom Function (PRF)

A function family  is considered pseudorandom if 
the following indistinguishability holds

F

“  looks random”F
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Real: 
  

 lookup( ): 
   return 

k $← {0,1}λ

m
F(k, m)

Ideal: 
  

 lookup( ): 
   if : 
      
   return 

T ← EmptyMap

m
m ∉ T

T[m] $← {0,1}out

T[m]

c=



Let’s “securely” implement the following functionality

Input:  input nothingP0, P1

Output:  outputs an encryption key ,  outputs P0 k P1 F(k,0)
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k $← {0,1}λ
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Let’s “securely” implement the following functionality

Input:  input nothingP0, P1

Output:  outputs an encryption key ,  outputs P0 k P1 F(k,0)

k

F(k,0)

k $← {0,1}λ
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: View0( ) : View1( )

k $← {0,1}λ k F(k,0)
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: 
   
  return  

View0( )
k $← {0,1}λ

k

: 
   
  return  

View1( )
k $← {0,1}λ

k

k $← {0,1}λ k F(k,0)
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: 
   
  return  

View0( )
k $← {0,1}λ

k

: 
   
  return  

View1( )
k $← {0,1}λ

k

: 𝒮0(k) : 𝒮1(F(k,0))

k $← {0,1}λ k F(k,0)
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: 
   
  return  

View0( )
k $← {0,1}λ

k

: 
   
  return  

View1( )
k $← {0,1}λ

k

: 
   
  return  

𝒮0(k)
k′ 

$← {0,1}λ

k′ 

: 𝒮1(F(k,0))

k $← {0,1}λ k F(k,0)
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: 
   
  return  

𝒮1(F(k,0))
k′ 

$← {0,1}λ

k′ 

= =

: 
   
  return  

View0( )
k $← {0,1}λ

k

: 
   
  return  

View1( )
k $← {0,1}λ

k

: 
   
  return  

𝒮0(k)
k′ 

$← {0,1}λ

k′ 

k $← {0,1}λ k F(k,0)
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The simulated view 
is not consistent 
with the output!

k $← {0,1}λ k F(k,0)

: 
   
  return  

𝒮1(F(k,0))
k′ 

$← {0,1}λ

k′ 

= =

: 
   
  return  

View0( )
k $← {0,1}λ

k

: 
   
  return  

View1( )
k $← {0,1}λ

k

: 
   
  return  

𝒮0(k)
k′ 

$← {0,1}λ

k′ 
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Let  be a deterministic functionality. We say that a 
protocol  securely computes  in the presence of a semi-
honest adversary if for each party  there exists a 
polynomial time simulator  such that for all inputs :

f
Π f

i ∈ {0,1}
𝒮i x0, x1

{ViewΠ
i (x0, x1)}
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Two-Party Semi-Honest Security

for deterministic functionalities 

{𝒮i(xi, yi) | (y0, y1) ← f(x0, x1)}

c=



Two-Party Semi-Honest Security

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}
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{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

Let  be a functionality. We say that a protocol  securely 
computes  in the presence of a semi-honest adversary if 
for each party  there exists a polynomial time 

simulator  such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

c=



{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}
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c=

c=



{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Fact: there does not exist  proving this protocol secure𝒮1
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c=



{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Fact: there does not exist  proving this protocol secure𝒮1

Proof: By using the existence of  to construct a distinguisher for the PRF 𝒮1
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c=



{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Given ,  has to spit out F(k,0) 𝒮1 k
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c=



{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Given ,  has to spit out F(k,0) 𝒮1 k
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: 
  .lookup(0) 
   
  return 
    .lookup(1)   

𝒟(PRF)
m ← PRF
k ← S1(m)

PRF ?= F(k,1)

c=



k $← {0,1}λ k F(k,0)
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: 
  .lookup(0) 
   
  return 
    .lookup(1)   

𝒟(PRF)
m ← PRF
k ← S1(m)

PRF ?= F(k,1)

Real: 
  

 lookup( ): 
   return 

k $← {0,1}λ

m
F(k, m)

Ideal: 
  

 lookup( ): 
   if : 
      
   return 

T ← EmptyMap

m
m ∉ T

T[m] $← {0,1}out

T[m]

CONTRADICTION

c=



Input:  input nothingP0, P1

Output:  outputs an encryption key ,  outputs P0 k P1 F(k,0)

k

F(k,0)

k $← {0,1}λ
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Input:  input nothingP0, P1

Output:  outputs an encryption key ,  outputs P0 k P1 F(k,0)

F(k,0)

F(k,0)

k $← {0,1}λ
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{F(k,0), (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ F(k,0) F(k,0)

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}
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c=

c=



{F(k,0), (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ F(k,0) F(k,0)

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}
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: 
  return  
𝒮1(F(k,0))

F(k,0)

c=

c=



Two-Party Semi-Honest Security

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}
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{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

Let  be a functionality. We say that a protocol  securely 
computes  in the presence of a semi-honest adversary if 
for each party  there exists a polynomial time 

simulator  such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

c=
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We consider a single global adversary who corrupts a subset of the parties



Two-Party Semi-Honest Security

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}
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{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}
≈

Let  be a functionality. We say that a protocol  securely 
computes  in the presence of a semi-honest adversary if 
for each party  there exists a polynomial time 

simulator  such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1



Semi-Honest Security

(⋃
i∈c

ViewΠ
i (x0, . . . , xn−1)), OutputΠ(x0, . . . , xn−1)
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{𝒮c (⋃
i∈c

{xi, yi}), (y0, . . . yn−1) | (y0, . . . yn−1) ← f(x0, . . . , xn−1)}
≈

Let  be  parties. Let  be a functionality. We say 
that a protocol  securely computes  in the presence of a 

semi-honest adversary if for each subset  of 
corrupted parties there exists a polynomial time simulator  

such that for all inputs :

P0, . . . , Pn−1 n f
Π f

c ⊆ {0,...,n − 1}
𝒮c

x0, . . . , xn−1
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Multiparty GMW
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XOR Secret Shares

The XOR secret sharing of a bit  is a pair of 
bits  where  holds  and  holds 

, and where  

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

We sometimes denote such a pair by [x]
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XOR Secret Shares

The XOR secret sharing of a bit  is a tuple of 
bits  where  holds , and where: 

x
⟨x0, . . . , xn−1⟩ Pi xi

We sometimes denote such a pair by [x]

(⨁
i

xi) = x
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⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?


How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]
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⊕
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⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?


How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

OT
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

(⨁
i

xi) ∧ (⨁
i

yi)
⨁

i,j

xi ∧ yj
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∧
[x]
[y]
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∧
[x]
[y]

OT

OT

OT
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∧
[x]
[y]

OT

OT

OT

[x ∧ y]
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GMW Security
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Suppose we have a protocol  that securely computes a functionality ρ g

Composition
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Suppose we have a protocol  that securely computes a functionality ρ g

Composition

Suppose we write a new a “hybrid” protocol  that uses  as a black boxπ g



53

Suppose we have a protocol  that securely computes a functionality ρ g

Composition

Suppose we write a new a “hybrid” protocol  that uses  as a black boxπ g

Now we prove  securely computes  when using  as a black boxπ f g
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Suppose we have a protocol  that securely computes a functionality ρ g

Composition

Suppose we write a new a “hybrid” protocol  that uses  as a black boxπ g

Now we prove  securely computes  when using  as a black boxπ f g

If we then substitute calls to  by , then the 
resulting protocol securely implements  

g ρ
f
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π

g
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π

g

ρ g
≈

≈
π with ρ
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Goal: given gate input wires holding , 
put  on the gate output

[x], [y]
[x ∧ y]

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1
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s $← {0,1}

OT
y1

OT
s, s ⊕ x1

r ⊕ (x0 ∧ y1)
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s $← {0,1}

OT
y1

OT
s, s ⊕ x1

r $← {0,1}
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⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?


How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]
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Real World Protocol

For each AND, sample a bit 
and call OT functionality twice

For each input (owned by this 
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Walk gate by gate through circuit, 
maintaining wire shares

For each XOR, XOR shares
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Real World Protocol
Walk gate by gate through circuit, 
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit 
and call OT functionality twice

For each input (owned by this 
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation
Walk gate by gate through circuit, 
maintaining simulated wire shares
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Real World Protocol
Walk gate by gate through circuit, 
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit 
and call OT functionality twice

For each input (owned by this 
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this 
party), sample random shares

Walk gate by gate through circuit, 
maintaining simulated wire shares
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Real World Protocol
Walk gate by gate through circuit, 
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit 
and call OT functionality twice

For each input (owned by this 
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this 
party), sample random shares

For each other input, sample a share

Walk gate by gate through circuit, 
maintaining simulated wire shares
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Real World Protocol
Walk gate by gate through circuit, 
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit 
and call OT functionality twice

For each input (owned by this 
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this 
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Walk gate by gate through circuit, 
maintaining simulated wire shares
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Real World Protocol
Walk gate by gate through circuit, 
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit 
and call OT functionality twice

For each input (owned by this 
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this 
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Walk gate by gate through circuit, 
maintaining simulated wire shares

For each AND, sample a bit and 
simulate OT receive by a uniform bit
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Real World Protocol
Walk gate by gate through circuit, 
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit 
and call OT functionality twice

For each input (owned by this 
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this 
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Walk gate by gate through circuit, 
maintaining simulated wire shares

For each AND, sample a bit and 
simulate OT receive by a uniform bit

For each output, compute message 
consistent with the output



Today’s objectives 

Discuss randomized functionalities


Update definition of semi-honest security


See a proof of insecurity


Consider security proof for GMW protocol
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