Randomized Functionalities; GMW Continued

CS 598 DH

Today's objectives

Discuss randomized functionalities

Update definition of semi-honest security

See a proof of insecurity

Consider security proof for GMW protocol

GMW Protocol

Propagate secret shares from input wires to output wires

Use OT to implement AND gates

Cost:

O(|C|) OTs

Number of protocol rounds scales with multiplicative depth of C

Today: Full definition of semi-honest security

And GMW for more than two parties

Two-Party Semi-Honest Security for deterministic functionalities

Let f be a function. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator \mathcal{S}_i such that for all inputs x_0, x_1 :

View_i^{$$\Pi$$} $(x_0, x_1) \stackrel{c}{=} S_i(x_i, f(x_0, x_1))$

Two-Party Semi-Honest Security for deterministic functionalities

Let f be a function. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator \mathcal{S}_i such that for all inputs x_0, x_1 :

View_i^{$$\Pi$$} $(x_0, x_1) \stackrel{c}{=} S_i(x_i, f(x_0, x_1))$

Pseudorandom Function (PRF)

A function family F is considered pseudorandom if the following indistinguishability holds

Pseudorandom Function (PRF)

A function family F is considered pseudorandom if the following indistinguishability holds

"F looks random"

Let's "securely" implement the following functionality

Input: P_0 , P_1 input nothing

Output: P_0 outputs an encryption key k, P_1 outputs F(k,0)

Let's "securely" implement the following functionality

Input: P_0 , P_1 input nothing

Output: P_0 outputs an encryption key k, P_1 outputs F(k,0)

$$k \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

Let's "securely" implement the following functionality

Input: P_0, P_1 input nothing

Output: P_0 outputs an encryption key k, P_1 outputs F(k,0)

F(k,0)

View₀():

View₁():

View₀():
$$k \leftarrow \{0,1\}^{\lambda}$$
return k

View₁():
$$k \leftarrow \{0,1\}^{\lambda}$$
return k

View₀():

$$k \leftarrow \{0,1\}^{\lambda}$$

return k

$$S_0(k)$$
:

View₁():
$$k \leftarrow \{0,1\}^{\lambda}$$
return k

$$\mathcal{S}_1(F(k,0))$$
:

View₀():
$$k \leftarrow \{0,1\}^{\lambda}$$
return k

$$\mathcal{S}_0(k)$$
:
$$k' \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$\text{return } k'$$

View₁():
$$k \leftarrow \{0,1\}^{\lambda}$$
return k

$$\mathcal{S}_1(F(k,0))$$
:

View₀():

$$k \leftarrow \{0,1\}^{\lambda}$$

return k

$$\mathcal{S}_0(k)$$
:
$$k' \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$\text{return } k'$$

View₁():

$$k \leftarrow \{0,1\}^{\lambda}$$

return k

$$\mathcal{S}_1(F(k,0))$$
:
$$k' \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$\text{return } k'$$

View₀():

$$k \leftarrow \{0,1\}^{\lambda}$$

return k

 $\mathcal{S}_0(k)$: $k' \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ return k'

The simulated view is not consistent with the output!

View₁():
$$k \leftarrow \{0,1\}^{\lambda}$$
return k

$$\mathcal{S}_1(F(k,0))$$
:
$$k' \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$\text{return } k'$$

Two-Party Semi-Honest Security for deterministic functionalities

Let f be a **deterministic** functionality. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator \mathcal{S}_i such that for all inputs x_0, x_1 :

Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator \mathcal{S}_i such that for all inputs x_0, x_1 :

$$\{ \text{View}_{i}^{\Pi}(x_{0}, x_{1}), \text{Output}^{\Pi}(x_{0}, x_{1}) \}$$

$$\stackrel{C}{=}$$

$$\{ \mathcal{S}_{i}(x_{i}, y_{i}), (y_{0}, y_{1}) \mid (y_{0}, y_{1}) \leftarrow f(x_{0}, x_{1}) \}$$

$$\{\text{View}_{i}^{\Pi}(x_{0}, x_{1}), \text{Output}^{\Pi}(x_{0}, x_{1})\}\$$

$$C$$

$$=$$

$$\{\mathcal{S}_{i}(x_{i}, y_{i}), (y_{0}, y_{1}) \mid (y_{0}, y_{1}) \leftarrow f(x_{0}, x_{1})\}$$

Fact: there does not exist \mathcal{S}_1 proving this protocol secure

Fact: there does not exist \mathcal{S}_1 proving this protocol secure

Proof: By using the existence of \mathcal{S}_1 to construct a distinguisher for the PRF

$$\{k, (k, F(k, 0))\}\$$

$$C$$
=
$$\{S_1(F(k, 0)), (k, F(k, 0)) \mid k \leftarrow \{0, 1\}^{\lambda}\}$$

Given F(k,0), \mathcal{S}_1 has to spit out k

$$\mathcal{D}(PRF)$$
:

 $m \leftarrow PRF.lookup(0)$
 $k \leftarrow S_1(m)$

return

 $PRF.lookup(1) \stackrel{?}{=} F(k,1)$

Given F(k,0), S_1 has to spit out k

CONTRADICTION

Real: $k \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

> lookup(m): return F(k,m)

Ø(PRF): $m \leftarrow PRF.lookup(0)$ $k \leftarrow S_1(m)$ return PRF.lookup(1) $\stackrel{?}{=} F(k,1)$ Ideal: $T \leftarrow \text{EmptyMap}$ lookup(m):

if $m \notin T$: $T[m] \stackrel{\$}{\leftarrow} \{0,1\}^{\text{out}}$ return T[m]

Input: P_0, P_1 input nothing

Output: P_0 outputs an encryption key k, P_1 outputs F(k,0)

F(k,0)

Input: P_0, P_1 input nothing

Output: P_0 outputs an encryption key k, P_1 outputs F(k,0)

F(k,0)

$$\{\text{View}_{i}^{\Pi}(x_{0}, x_{1}), \text{Output}^{\Pi}(x_{0}, x_{1})\}\$$

$$C$$

$$=$$

$$\{\mathcal{S}_{i}(x_{i}, y_{i}), (y_{0}, y_{1}) \mid (y_{0}, y_{1}) \leftarrow f(x_{0}, x_{1})\}$$

$$\{F(k,0), (k, F(k,0))\}\$$

$$C$$
=
$$\{S_1(F(k,0)), (k, F(k,0)) \mid k \leftarrow \{0,1\}^{\lambda}\}$$

$$\{\text{View}_{i}^{\Pi}(x_{0}, x_{1}), \text{Output}^{\Pi}(x_{0}, x_{1})\}\$$

$$C$$

$$=$$

$$\{\mathcal{S}_{i}(x_{i}, y_{i}), (y_{0}, y_{1}) \mid (y_{0}, y_{1}) \leftarrow f(x_{0}, x_{1})\}$$

$$\{F(k,0), (k, F(k,0))\}$$

$$C$$
=
$$\{S_1(F(k,0)), (k, F(k,0)) \mid k \leftarrow \{0,1\}^{\lambda}\}$$

$$\mathcal{S}_1(F(k,0))$$
:
return $F(k,0)$

Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator \mathcal{S}_i such that for all inputs x_0, x_1 :

$$\{ \text{View}_{i}^{\Pi}(x_{0}, x_{1}), \text{Output}^{\Pi}(x_{0}, x_{1}) \}$$

$$\stackrel{C}{=}$$

$$\{ \mathcal{S}_{i}(x_{i}, y_{i}), (y_{0}, y_{1}) \mid (y_{0}, y_{1}) \leftarrow f(x_{0}, x_{1}) \}$$

We consider a single global adversary who corrupts a subset of the parties

Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator \mathcal{S}_i such that for all inputs x_0, x_1 :

$$\{ \text{View}_{i}^{\Pi}(x_{0}, x_{1}), \text{Output}^{\Pi}(x_{0}, x_{1}) \}$$

$$\approx$$

$$\{ \mathcal{S}_{i}(x_{i}, y_{i}), (y_{0}, y_{1}) \mid (y_{0}, y_{1}) \leftarrow f(x_{0}, x_{1}) \}$$

Semi-Honest Security

Let P_0, \ldots, P_{n-1} be n parties. Let f be a functionality. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each subset $c \subseteq \{0, ..., n-1\}$ of corrupted parties there exists a polynomial time simulator \mathcal{S}_c such that for all inputs x_0, \ldots, x_{n-1} :

$$\left\{ \left(\bigcup_{i \in c} \operatorname{View}_{i}^{\Pi}(x_{0}, \dots, x_{n-1}) \right), \operatorname{Output}^{\Pi}(x_{0}, \dots, x_{n-1}) \right\}$$

$$\left\{ \mathcal{S}_{c} \left(\bigcup_{i \in c} \{x_{i}, y_{i}\} \right), (y_{0}, \dots, y_{n-1}) \mid (y_{0}, \dots, y_{n-1}) \leftarrow f(x_{0}, \dots, x_{n-1}) \right\}$$

Multiparty GMW

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of bits $\langle x_0, x_1 \rangle$ where P_0 holds x_0 and P_1 holds x_1 , and where $x_0 \oplus x_1 = x$

We sometimes denote such a pair by [x]

XOR Secret Shares

The XOR secret sharing of a bit x is a tuple of bits $\langle x_0, \dots, x_{n-1} \rangle$ where P_i holds x_i , and where:

$$\left(\bigoplus_{i} x_{i}\right) = x$$

We sometimes denote such a pair by [x]

Where do input shares come from?
How do we XOR two shares?

How do we AND two shares?

How do we "decrypt" output shares?

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we "decrypt" output shares?

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we "decrypt" output shares? 🗸

How do we AND two shares?

Goal: given gate input wires holding [x], [y], put $[x \land y]$ on the gate output

$$(x_0 \oplus x_1) \wedge (y_0 \oplus y_1)$$

$$= (x_0 \wedge y_0) \oplus (x_0 \wedge y_1) \oplus (x_1 \wedge y_0) \oplus (x_1 \wedge y_1)$$

How do we AND two shares?

Goal: given gate input wires holding [x], [y], put $[x \land y]$ on the gate output

$$(x_0 \oplus x_1) \wedge (y_0 \oplus y_1)$$

$$= (x_0 \wedge y_0) \oplus (x_0 \wedge y_1) \oplus (x_1 \wedge y_0) \oplus (x_1 \wedge y_1)$$

$$OT$$

How do we AND two shares?

Goal: given gate input wires holding [x], [y], put $[x \land y]$ on the gate output

$$\left(\bigoplus_{i} x_{i}\right) \wedge \left(\bigoplus_{i} y_{i}\right)$$

$$\bigoplus_{i,j} x_i \wedge y_j$$

GMW Security

Theorem 7.3.3 (Composition Theorem for the semi-honest model): Suppose that g is privately reducible to f and that there exists a protocol for privately computing f. Then there exists a protocol for privately computing g.

Suppose we have a protocol ρ that securely computes a functionality g

Suppose we have a protocol ρ that securely computes a functionality g

Suppose we write a new a "hybrid" protocol π that uses g as a black box

Suppose we have a protocol ρ that securely computes a functionality g

Suppose we write a new a "hybrid" protocol π that uses g as a black box

Now we prove π securely computes f when using g as a black box

Suppose we have a protocol ρ that securely computes a functionality g

Suppose we write a new a "hybrid" protocol π that uses g as a black box

Now we prove π securely computes f when using g as a black box

If we then substitute calls to g by ρ , then the resulting protocol securely implements f

Goal: given gate input wires holding [x], [y], put $[x \land y]$ on the gate output

 $s \leftarrow \{0,1\}$

$$r \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r, r \oplus x_0 \qquad \qquad y_1 \qquad \qquad r \oplus$$

$$\begin{array}{c}
 & \longrightarrow \\
 & \longrightarrow \\$$

$$s \stackrel{\$}{\leftarrow} \{0,1\}$$

$$s \stackrel{\$}{\leftarrow} \{0,1\}$$

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we "decrypt" output shares?

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share

For each XOR, XOR shares

For each AND, sample a bit and call OT functionality twice

For each output, send/receive shares

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share

For each XOR, XOR shares

For each AND, sample a bit and call OT functionality twice

For each output, send/receive shares

Simulation

Walk gate by gate through circuit, maintaining simulated wire shares

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share

For each XOR, XOR shares

For each AND, sample a bit and call OT functionality twice

For each output, send/receive shares

Simulation

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share

For each XOR, XOR shares

For each AND, sample a bit and call OT functionality twice

For each output, send/receive shares

Simulation

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share

For each XOR, XOR shares

For each AND, sample a bit and call OT functionality twice

For each output, send/receive shares

Simulation

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share

For each XOR, XOR shares

For each AND, sample a bit and call OT functionality twice

For each output, send/receive shares

Simulation

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

For each AND, sample a bit and simulate OT receive by a uniform bit

Walk gate by gate through circuit, maintaining wire shares

For each input (owned by this party), sample and send shares

For each other input, receive a share

For each XOR, XOR shares

For each AND, sample a bit and call OT functionality twice

For each output, send/receive shares

Simulation

Walk gate by gate through circuit, maintaining simulated wire shares

For each input (owned by this party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

For each AND, sample a bit and simulate OT receive by a uniform bit

For each output, compute message consistent with the output

Today's objectives

Discuss randomized functionalities

Update definition of semi-honest security

See a proof of insecurity

Consider security proof for GMW protocol