
Randomized Functionalities;
GMW Continued
CS 598 DH

Today’s objectives

Discuss randomized functionalities

Update definition of semi-honest security

See a proof of insecurity

Consider security proof for GMW protocol

2

3

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:

 OTs

 Number of protocol rounds scales with multiplicative depth of
O(|C |)

C

4

Today: Full definition of semi-honest security

And GMW for more than two parties

Two-Party Semi-Honest Security

for deterministic functionalities

Let be a function. We say that a protocol securely
computes in the presence of a semi-honest adversary if
for each party there exists a polynomial time

simulator such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

5

ViewΠ
i (x0, x1)

c= 𝒮i(xi, f(x0, x1))

Two-Party Semi-Honest Security

for deterministic functionalities

Let be a function. We say that a protocol securely
computes in the presence of a semi-honest adversary if
for each party there exists a polynomial time

simulator such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

ViewΠ
i (x0, x1)

c= 𝒮i(xi, f(x0, x1))

6

Pseudorandom Function (PRF)

Real:

 lookup():
 return

k $← {0,1}λ

m
F(k, m)

A function family is considered pseudorandom if
the following indistinguishability holds

F

Ideal:

 lookup():
 if :

 return

T ← EmptyMap

m
m ∉ T

T[m] $← {0,1}out

T[m]

7

c=

Pseudorandom Function (PRF)

A function family is considered pseudorandom if
the following indistinguishability holds

F

“ looks random”F
8

Real:

 lookup():
 return

k $← {0,1}λ

m
F(k, m)

Ideal:

 lookup():
 if :

 return

T ← EmptyMap

m
m ∉ T

T[m] $← {0,1}out

T[m]

c=

Let’s “securely” implement the following functionality

Input: input nothingP0, P1

Output: outputs an encryption key , outputs P0 k P1 F(k,0)

9

Let’s “securely” implement the following functionality

Input: input nothingP0, P1

Output: outputs an encryption key , outputs P0 k P1 F(k,0)

k $← {0,1}λ

10

Let’s “securely” implement the following functionality

Input: input nothingP0, P1

Output: outputs an encryption key , outputs P0 k P1 F(k,0)

k

F(k,0)

k $← {0,1}λ

11

: View0() : View1()

k $← {0,1}λ k F(k,0)

12

:

 return

View0()
k $← {0,1}λ

k

:

 return

View1()
k $← {0,1}λ

k

k $← {0,1}λ k F(k,0)

13

:

 return

View0()
k $← {0,1}λ

k

:

 return

View1()
k $← {0,1}λ

k

: 𝒮0(k) : 𝒮1(F(k,0))

k $← {0,1}λ k F(k,0)

14

:

 return

View0()
k $← {0,1}λ

k

:

 return

View1()
k $← {0,1}λ

k

:

 return

𝒮0(k)
k′￼

$← {0,1}λ

k′￼

: 𝒮1(F(k,0))

k $← {0,1}λ k F(k,0)

15

:

 return

𝒮1(F(k,0))
k′￼

$← {0,1}λ

k′￼

= =

:

 return

View0()
k $← {0,1}λ

k

:

 return

View1()
k $← {0,1}λ

k

:

 return

𝒮0(k)
k′￼

$← {0,1}λ

k′￼

k $← {0,1}λ k F(k,0)

16

The simulated view
is not consistent
with the output!

k $← {0,1}λ k F(k,0)

:

 return

𝒮1(F(k,0))
k′￼

$← {0,1}λ

k′￼

= =

:

 return

View0()
k $← {0,1}λ

k

:

 return

View1()
k $← {0,1}λ

k

:

 return

𝒮0(k)
k′￼

$← {0,1}λ

k′￼

17

Let be a deterministic functionality. We say that a
protocol securely computes in the presence of a semi-
honest adversary if for each party there exists a
polynomial time simulator such that for all inputs :

f
Π f

i ∈ {0,1}
𝒮i x0, x1

{ViewΠ
i (x0, x1)}

18

Two-Party Semi-Honest Security

for deterministic functionalities

{𝒮i(xi, yi) | (y0, y1) ← f(x0, x1)}

c=

Two-Party Semi-Honest Security

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

19

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

Let be a functionality. We say that a protocol securely
computes in the presence of a semi-honest adversary if
for each party there exists a polynomial time

simulator such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

c=

{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

20

c=

c=

{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Fact: there does not exist proving this protocol secure𝒮1

21

c=

{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Fact: there does not exist proving this protocol secure𝒮1

Proof: By using the existence of to construct a distinguisher for the PRF 𝒮1

22

c=

{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Given , has to spit out F(k,0) 𝒮1 k

23

c=

{k, (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ k F(k,0)

Given , has to spit out F(k,0) 𝒮1 k

24

:
 .lookup(0)

 return
 .lookup(1)

𝒟(PRF)
m ← PRF
k ← S1(m)

PRF ?= F(k,1)

c=

k $← {0,1}λ k F(k,0)

25

:
 .lookup(0)

 return
 .lookup(1)

𝒟(PRF)
m ← PRF
k ← S1(m)

PRF ?= F(k,1)

Real:

 lookup():
 return

k $← {0,1}λ

m
F(k, m)

Ideal:

 lookup():
 if :

 return

T ← EmptyMap

m
m ∉ T

T[m] $← {0,1}out

T[m]

CONTRADICTION

c=

Input: input nothingP0, P1

Output: outputs an encryption key , outputs P0 k P1 F(k,0)

k

F(k,0)

k $← {0,1}λ

26

Input: input nothingP0, P1

Output: outputs an encryption key , outputs P0 k P1 F(k,0)

F(k,0)

F(k,0)

k $← {0,1}λ

27

{F(k,0), (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ F(k,0) F(k,0)

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

28

c=

c=

{F(k,0), (k, F(k,0))}

{𝒮1(F(k,0)), (k, F(k,0)) | k ← {0,1}λ}

k $← {0,1}λ F(k,0) F(k,0)

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

29

:
 return
𝒮1(F(k,0))

F(k,0)

c=

c=

Two-Party Semi-Honest Security

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

30

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

Let be a functionality. We say that a protocol securely
computes in the presence of a semi-honest adversary if
for each party there exists a polynomial time

simulator such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

c=

31

32

We consider a single global adversary who corrupts a subset of the parties

Two-Party Semi-Honest Security

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

33

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}
≈

Let be a functionality. We say that a protocol securely
computes in the presence of a semi-honest adversary if
for each party there exists a polynomial time

simulator such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

Semi-Honest Security

(⋃
i∈c

ViewΠ
i (x0, . . . , xn−1)), OutputΠ(x0, . . . , xn−1)

34

{𝒮c (⋃
i∈c

{xi, yi}), (y0, . . . yn−1) | (y0, . . . yn−1) ← f(x0, . . . , xn−1)}
≈

Let be parties. Let be a functionality. We say
that a protocol securely computes in the presence of a

semi-honest adversary if for each subset of
corrupted parties there exists a polynomial time simulator

such that for all inputs :

P0, . . . , Pn−1 n f
Π f

c ⊆ {0,...,n − 1}
𝒮c

x0, . . . , xn−1

35

36

37

Multiparty GMW

38

XOR Secret Shares

The XOR secret sharing of a bit is a pair of
bits where holds and holds

, and where

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

We sometimes denote such a pair by [x]

39

XOR Secret Shares

The XOR secret sharing of a bit is a tuple of
bits where holds , and where:

x
⟨x0, . . . , xn−1⟩ Pi xi

We sometimes denote such a pair by [x]

(⨁
i

xi) = x

40

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

41

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

42

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

43

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

44

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

OT

45

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

(⨁
i

xi) ∧ (⨁
i

yi)
⨁

i,j

xi ∧ yj

46

∧
[x]
[y]

47

∧
[x]
[y]

OT

OT

OT

48

∧
[x]
[y]

OT

OT

OT

[x ∧ y]

49

GMW Security

50

51

Suppose we have a protocol that securely computes a functionality ρ g

Composition

52

Suppose we have a protocol that securely computes a functionality ρ g

Composition

Suppose we write a new a “hybrid” protocol that uses as a black boxπ g

53

Suppose we have a protocol that securely computes a functionality ρ g

Composition

Suppose we write a new a “hybrid” protocol that uses as a black boxπ g

Now we prove securely computes when using as a black boxπ f g

54

Suppose we have a protocol that securely computes a functionality ρ g

Composition

Suppose we write a new a “hybrid” protocol that uses as a black boxπ g

Now we prove securely computes when using as a black boxπ f g

If we then substitute calls to by , then the
resulting protocol securely implements

g ρ
f

55

π

g

56

π

g

ρ g
≈

≈
π with ρ

57

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1

58

s $← {0,1}

OT
y1

OT
s, s ⊕ x1

r ⊕ (x0 ∧ y1)

59

s $← {0,1}

OT
y1

OT
s, s ⊕ x1

r $← {0,1}

60

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

61

Real World Protocol

For each AND, sample a bit
and call OT functionality twice

For each input (owned by this
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Walk gate by gate through circuit,
maintaining wire shares

For each XOR, XOR shares

62

Real World Protocol
Walk gate by gate through circuit,
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each input (owned by this
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation
Walk gate by gate through circuit,
maintaining simulated wire shares

63

Real World Protocol
Walk gate by gate through circuit,
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each input (owned by this
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this
party), sample random shares

Walk gate by gate through circuit,
maintaining simulated wire shares

64

Real World Protocol
Walk gate by gate through circuit,
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each input (owned by this
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this
party), sample random shares

For each other input, sample a share

Walk gate by gate through circuit,
maintaining simulated wire shares

65

Real World Protocol
Walk gate by gate through circuit,
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each input (owned by this
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Walk gate by gate through circuit,
maintaining simulated wire shares

66

Real World Protocol
Walk gate by gate through circuit,
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each input (owned by this
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Walk gate by gate through circuit,
maintaining simulated wire shares

For each AND, sample a bit and
simulate OT receive by a uniform bit

67

Real World Protocol
Walk gate by gate through circuit,
maintaining wire shares

For each XOR, XOR shares

For each AND, sample a bit
and call OT functionality twice

For each input (owned by this
party), sample and send shares

For each other input, receive a share

For each output, send/
receive shares

Simulation

For each input (owned by this
party), sample random shares

For each other input, sample a share

For each XOR, XOR shares

Walk gate by gate through circuit,
maintaining simulated wire shares

For each AND, sample a bit and
simulate OT receive by a uniform bit

For each output, compute message
consistent with the output

Today’s objectives

Discuss randomized functionalities

Update definition of semi-honest security

See a proof of insecurity

Consider security proof for GMW protocol

68

